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We detail a learning progressions approach to early algebra research and how existing work around 
learning progressions and trajectories in mathematics and science education has informed our 
development of a four-component theoretical framework consisting of: a curricular progression of 
learning goals across big algebraic ideas; an instructional sequence of tasks based on objectives 
concerning content and algebraic thinking practices; assessments; and posited levels of 
sophistication in children’s reasoning about algebraic concepts within big ideas of early algebra. 
This research balances the goals of longitudinal research on supporting students’ preparedness for 
algebra while attending to the practical goals of establishing connections among curriculum, 
instruction, and student learning. 
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Learning progressions and trajectories are currently receiving much attention in mathematics and 
science education, especially in advancing recommendations for standards, curriculum, assessment, 
and instruction (Daro, Mosher, & Corcoran, 2011). Some key issues within this domain of research 
include the use and meaning of terminology, methods of assessing sophistication in student thinking, 
and connections among curriculum, instruction, and student reasoning (Barrett & Battista, 2014; 
Ellis, Weber, & Lockwood, 2014). This paper addresses these issues, with particular attention to the 
ambiguous use of the term learning progression—“sometimes indicating developmental 
progressions, and at other times suggesting a sequence of instructional activities” (Clements & 
Sarama, 2014, p. 2). We take the stance that a learning progression includes both.  

This research is situated within the Learning through an Early Algebra Progression (LEAP) 
project, which is grounded in a research agenda concerned with a fundamental question of how to 
prepare students in the elementary grades for success in middle grades algebra and beyond (Blanton, 
Stephens, Knuth, Gardiner, Isler, & Kim, 2015). The LEAP project builds on Kaput’s (2008) 
framework for early algebra in documenting changes in students’ learning of both algebraic content 
and algebraic thinking practices over time. Our purpose is to elaborate a theoretical framework for an 
Early Algebra Learning Progression (EALP), making progress in a program of research whose aim 
is to support an integrated system of curriculum, instruction, and student learning in early algebra. 

Theoretical Framework 
The EALP advanced in this research includes four components: (1) a curricular progression of 

learning goals across five big ideas and corresponding core concepts, (2) a sequence of instructional 
tasks based on objectives for content and algebraic thinking practices across big ideas, (3) 
assessments and coding schemes for analyzing student strategies, and (4) levels of sophistication in 
children’s thinking about core concepts in early algebra. See Table 1. 
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Table 1: A Theoretical Framework for an Early Algebra Learning Progression (EALP) 

 
 
This work builds on several related perspectives across “progressions” research in both mathematics 
and science education, elaborated next across each dimension of the framework. 

Curricular Progression 
The multi-year scope of the LEAP project warrants attention to a continuum of levels of 

specificity in content across grades and within grades and lessons. Thus we define our curricular 
progression to encompass various grain sizes (from largest to smallest): big ideas, core concepts, and 
learning goals (or claims). The curricular progression establishes a foundation of targeted learning 
goals from which instruction, assessments, and levels of student thinking are based. 

Big ideas are “key ideas that underlie numerous concepts and procedures across topics” 
(Baroody, Cibulskis, Lai, & Li, 2004, p. 24). Drawing from early algebra the big ideas of the EALP 
are: (a) equivalence, expressions, equations, and inequalities (EEEI), (b) generalized arithmetic, (c) 
functional thinking, (d) variable, and (e) proportional reasoning. The multi-year curricular 
progression is organized around these content strands and the algebraic thinking practices of 
generalizing, representing, justifying, and reasoning with mathematical relationships (Blanton et al., 
2015; Kaput, 2008). A core concept is an idea critical to understanding a big idea. For the big idea of 
EEEI, a core concept is “The equal sign is used to represent the equivalence of two quantities or 
mathematical expressions.” We take a learning goal (Clements & Sarama, 2014) to include claims 
about the nature of understandings or skills (Shin et al., 2009) expected of students regarding a 
concept. For example, in our work a learning goal for the big idea of EEEI is to “understand the 
equal sign as a relational (rather than operational) symbol,” evidence of which is seen through 
students’ actions in interpreting true/false and open equations. 

Instructional Sequence 
The EALP instructional sequence is defined to include a sequence of lessons that entail lesson 

objectives, jumpstarts, and problem-solving tasks designed to address both concepts and algebraic 
thinking practices. Lessons are defined as guides for an instructional intervention session (typically 
one 60-minute class period). Lesson objectives are defined as statements of targeted performances; 
they are derived from the curricular progression’s learning goals and offer a systematic framework 
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for designing or adapting tasks and allow for the revisiting and extending of algebraic ideas across 
the grades. Each lesson begins with a jumpstart designed to engage students in revisiting and 
strengthening their understanding of core concepts and algebraic thinking practices addressed in 
previous lessons. New concepts are introduced through problem solving tasks, or structured 
opportunities for students to build and extend understandings and practices around a goal-driven 
assignment. As an example for EEEI, students are asked to engage in tasks adapted from research 
(e.g., Carpenter, Franke, and Levi, 2003) that have been successful in supporting students’ relational 
understanding of the equal sign.  

Shin and colleagues (2009) note that learning progressions do not set forth a single, linear path to 
understanding, but a web of interconnected constructs within a big idea. We likewise acknowledge 
that our instructional sequence represents one possible path for supporting the development of 
algebra understanding, and different productive paths certainly exist.  

Assessments 
Written assessments for each of grades 3-7 were designed to elicit student reasoning across the 

big ideas and algebraic thinking practices. Assessment items were often adapted from those that had 
performed well in previous research (e.g., for equivalence items see Knuth, Stephens, McNeil, & 
Alibali, 2006) and were piloted and revised prior to administration. The assessments include several 
“anchor items” that appear in multiple grades to allow us to measure growth on the same item over 
multiple years. Assessment items offer multiple points of entry so that students at the very beginning 
of the progression as well as those more experienced in early algebra can demonstrate what they 
know regarding algebraic content and thinking practices. For example, the True/False task 57 + 22 = 
58 + 21is posed across grades 3-5 to elicit understandings of the equal sign and equation structure 
and can be solved in multiple ways.  

Levels of Sophistication in Children’s Thinking 
The final piece of our approach to learning progressions in early algebra research concerns the 

documentation of changes in students’ learning over time. Levels of sophistication are “benchmarks 
of complex growth that represent distinct ways of thinking” (Clements & Sarama, 2014, p. 14). We 
initially conjectured levels of sophistication in student thinking based on extant empirical research on 
student conceptions, misconceptions, and difficulties. We then refined these after analyzing students’ 
responses to assessment items (i.e., student strategies)across grades to discern patterns in children’s 
thinking. Each level of sophistication represents a level of understanding as evidenced in their 
responses to one or more assessment task(s). 

For example, the levels of sophistication we conjectured and observed for students’ developing 
understanding of the equal sign range from Level 1’s “Student has operational view of the equal sign 
and inflexible view of equation structure” to Level 5’s “Student has advanced relational-structural 
understanding of the equal sign and flexible view of equation structure and can consider relationships 
across equations.” We view the levels of sophistication identified in our work as dependent on the 
learning goals and sequence of tasks that drive the intervention. 

Conclusion 
The large-scale nature of the LEAP project and our desire to speak to both research and 

practitioner audiences led to practical decisions about our theoretical frame. This included clearly 
stated objectives and assessment tasks that integrate algebraic thinking across several grades. We 
also integrate several perspectives across learning progressions and learning trajectories. Science 
education literature on learning progressions (e.g., Shin et al., 2009) provided an initial frame for 
coordinating disciplinary and research-based perspectives on student thinking. It also led to our 
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organizing the content of our EALP according to big ideas, core concepts, and claims. In 
mathematics education, our EALP parallels Battista’s (2004) emphasis on connections among core 
concepts, assessment items, and levels of sophistication. We also emphasize that the observed levels 
of sophistication in student strategies are inseparable from the curricular and instructional context in 
which the learning was supported, yet given the large scale scope of the LEAP project, these 
connections are not as tightly linked as in some learning trajectories research (cf. Clements & 
Sarama, 2004). 

Our continued research on a comprehensive approach to curriculum, instruction, and student 
learning is important work to share with the research community towards the goal of coordinating 
efforts to promote effective early algebra education and identifying important milestones in students’ 
thinking. We also feel it is important that this work be available in a practical form for teachers (e.g., 
lesson plans and professional development) as they engage in the day-to-day and year-to-year work 
of developing students’ algebraic reasoning. A feasible future direction of this work is to more 
closely examine paths of students’ thinking across grades and in turn, to posit tighter links between 
tasks and instructional strategies that could be productive in supporting students’ engagement in 
more sophisticated ways of reasoning. 
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